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Problem 1.13

Ezpressing one vector in terms of another
Let A be an arbitrary vector and let fi be a unit vector in some fixed direction. Show that

A=(A-A)A+(AXA)Xh

Solution

Suppose that A = (Aj, As, A3) and n = (n1,n2,n3). Let the unit vector in the z-direction be
denoted as 41, let the unit vector in the y-direction be denoted as &2, and let the unit vector in
the z-direction be denoted as d3.
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The cross product has been written in terms of the Levi-Civita symbol ¢, which is defined as

1 if (i,4,0) is (1,2,3) or (2,3,1) or (3,1,2)
giji = —1 if (4,4,0)is (3,2,1) or (1,3,2) or (2,1,3) .
0 ifi=jorj=lori=I
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Since we have a product of two Levi-Civita symbols, the sum over [ can be expressed in terms of
the Kronecker delta function, defined as

| i
0ij = Z (].7
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by using a known property.
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Therefore,
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