Problem 1.13

Expressing one vector in terms of another
Let \mathbf{A} be an arbitrary vector and let $\hat{\mathbf{n}}$ be a unit vector in some fixed direction. Show that
$\mathbf{A}=(\mathbf{A} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+(\hat{\mathbf{n}} \times \mathbf{A}) \times \hat{\mathbf{n}}$.

Solution

Suppose that $\mathbf{A}=\left\langle A_{1}, A_{2}, A_{3}\right\rangle$ and $\mathbf{n}=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$. Let the unit vector in the x-direction be denoted as $\boldsymbol{\delta}_{1}$, let the unit vector in the y-direction be denoted as $\boldsymbol{\delta}_{2}$, and let the unit vector in the z-direction be denoted as $\boldsymbol{\delta}_{3}$.

$$
\begin{aligned}
(\mathbf{A} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+(\hat{\mathbf{n}} \times \mathbf{A}) \times \hat{\mathbf{n}} & =(\mathbf{A} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+\left[\left(\sum_{i=1}^{3} n_{i} \boldsymbol{\delta}_{i}\right) \times\left(\sum_{j=1}^{3} A_{j} \boldsymbol{\delta}_{j}\right)\right] \times\left(\sum_{k=1}^{3} n_{k} \boldsymbol{\delta}_{k}\right) \\
& =(\mathbf{A} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+\left[\sum_{i=1}^{3} \sum_{j=1}^{3} n_{i} A_{j}\left(\boldsymbol{\delta}_{i} \times \boldsymbol{\delta}_{j}\right)\right] \times\left(\sum_{k=1}^{3} n_{k} \boldsymbol{\delta}_{k}\right) \\
& =(\mathbf{A} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+\left[\sum_{i=1}^{3} \sum_{j=1}^{3} n_{i} A_{j}\left(\sum_{l=1}^{3} \varepsilon_{i j l} \boldsymbol{\delta}_{l}\right)\right] \times\left(\sum_{k=1}^{3} n_{k} \boldsymbol{\delta}_{k}\right)
\end{aligned}
$$

The cross product has been written in terms of the Levi-Civita symbol ε, which is defined as

$$
\begin{aligned}
& \varepsilon_{i j l}= \begin{cases}1 & \text { if }(i, j, l) \text { is }(1,2,3) \text { or }(2,3,1) \text { or }(3,1,2) \\
-1 & \text { if }(i, j, l) \text { is }(3,2,1) \text { or }(1,3,2) \text { or }(2,1,3) . \\
0 & \text { if } i=j \text { or } j=l \text { or } i=l\end{cases} \\
&(\mathbf{A} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+(\hat{\mathbf{n}} \times \mathbf{A}) \times \hat{\mathbf{n}}=(\mathbf{A} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+\left(\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{l=1}^{3} n_{i} A_{j} \varepsilon_{i j l} \boldsymbol{\delta}_{l}\right) \times\left(\sum_{k=1}^{3} n_{k} \boldsymbol{\delta}_{k}\right) \\
&=(\mathbf{A} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3} n_{i} n_{k} A_{j} \varepsilon_{i j l}\left(\boldsymbol{\delta}_{l} \times \boldsymbol{\delta}_{k}\right) \\
&=(\mathbf{A} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3} n_{i} n_{k} A_{j} \varepsilon_{i j l}\left(\sum_{m=1}^{3} \varepsilon_{l k m} \boldsymbol{\delta}_{m}\right) \\
&=(\mathbf{A} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3} \sum_{m=1}^{3} n_{i} n_{k} A_{j} \varepsilon_{i j l} \varepsilon_{l k m} \boldsymbol{\delta}_{m}
\end{aligned}
$$

Cyclically permute the indices of the second Levi-Civita symbol so that l is in the third position.

$$
\begin{aligned}
& =(\mathbf{A} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3} \sum_{m=1}^{3} n_{i} n_{k} A_{j} \varepsilon_{i j l} \varepsilon_{k m l} \boldsymbol{\delta}_{m} \\
& =(\mathbf{A} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{m=1}^{3} n_{i} n_{k} A_{j}\left(\sum_{l=1}^{3} \varepsilon_{i j l} \varepsilon_{k m l}\right) \boldsymbol{\delta}_{m}
\end{aligned}
$$

Since we have a product of two Levi-Civita symbols, the sum over l can be expressed in terms of the Kronecker delta function, defined as

$$
\delta_{i j}=\left\{\begin{array}{ll}
1 & i=j \\
0 & i \neq j
\end{array},\right.
$$

by using a known property.

$$
\begin{aligned}
(\mathbf{A} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+(\hat{\mathbf{n}} \times \mathbf{A}) \times \hat{\mathbf{n}} & =(\mathbf{A} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{m=1}^{3} n_{i} n_{k} A_{j}\left(\delta_{i k} \delta_{j m}-\delta_{i m} \delta_{j k}\right) \boldsymbol{\delta}_{m} \\
= & (\mathbf{A} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{m=1}^{3} n_{i} n_{k} A_{j}\left(\delta_{i k} \delta_{j m}\right) \boldsymbol{\delta}_{m} \\
& -\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{m=1}^{3} n_{i} n_{k} A_{j}\left(\delta_{i m} \delta_{j k}\right) \boldsymbol{\delta}_{m}
\end{aligned}
$$

$\delta_{j m}$ makes $j=m$ in the first quadruple sum, and $\delta_{j k}$ makes $j=k$ in the second quadruple sum.

$$
=(\mathbf{A} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} n_{i} n_{k} A_{j}\left(\delta_{i k}\right) \boldsymbol{\delta}_{j}-\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{m=1}^{3} n_{i} n_{j} A_{j}\left(\delta_{i m}\right) \boldsymbol{\delta}_{m}
$$

$\delta_{i k}$ makes $i=k$ in the first triple sum, and $\delta_{i m}$ makes $i=m$ in the second triple sum.

$$
\begin{aligned}
& =(\mathbf{A} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+\sum_{i=1}^{3} \sum_{j=1}^{3} n_{i}^{2} A_{j} \boldsymbol{\delta}_{j}-\sum_{i=1}^{3} \sum_{j=1}^{3} n_{i} n_{j} A_{j} \boldsymbol{\delta}_{i} \\
& =(\mathbf{A} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+\left(\sum_{i=1}^{3} n_{i}^{2}\right)\left(\sum_{j=1}^{3} A_{j} \boldsymbol{\delta}_{j}\right)-\left(\sum_{j=1}^{3} A_{j} n_{j}\right)\left(\sum_{i=1}^{3} n_{i} \boldsymbol{\delta}_{i}\right)
\end{aligned}
$$

The sum over i of n_{i}^{2} is 1 because $\hat{\mathbf{n}}$ is a unit vector-it has unit magnitude.

$$
\begin{aligned}
& =(\mathbf{A} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+(1) \mathbf{A}-(\mathbf{A} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}} \\
& =\mathbf{A}
\end{aligned}
$$

Therefore,

$$
\mathbf{A}=(\mathbf{A} \cdot \hat{\mathbf{n}}) \hat{\mathbf{n}}+(\hat{\mathbf{n}} \times \mathbf{A}) \times \hat{\mathbf{n}} .
$$

